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ABSTRACT 

A simple formulation of the Grothendieck’s conjecture, some information on p-curvatures, recent 
history and elementary proofs for the equations y’ = ay and y’ = b are given in the first two sec- 
tions. For an inhomogeneous equation y’ = ay + b we propose an extension of the problem. One 
has to distinguish three cases. A proof, using Elkies’ result on supersingular primes for elliptic 
curves, covers part of the first case. The second case has a negative answer. The final case is shown to 
be related with recent progress in sieve theory. Some examples of degree two can be handled in this 
way. 

1. A FORMULATION OF THE CONJECTURE 

One considers a scalar linear differential operator 

L(y) := y(“) + a,_ J”- l) + . . . + a,y(‘) + soy, 

with all ai E Q(z). For almost all prime numbers p, i.e., with the exception of 
finitely many, the rational functions ai can be reduced modulo p. The reduc- 
tions of the ai will be denoted by ai,p They belong to the field Fp(z) of the ra- 
tional functions over the field of p elements Fp. The reduction of L modulo p 
will be denoted by Lp’ Then LP is a linear differential operator over the differ- 
ential field Fp(z). Grothendieck’s conjecture in its simplest (and most important) 
form asserts that the following two statements are equivalent. 

(1) L(y) = 0 has n linearly independent (over the algebraic closure of Q) so- 
lutions ~1, . . . , y,,, which are algebraic over Q(z). 
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(2) For almost allp, the equation LP( y) = 0 has n linearly independent solu- 
tions over thejieldFp(zP) in thefield Fp(z). 

Some comments. If one wishes to work over a differential field with algebrai- 
cally closed field of constants, then one can view L as a differential operator 
over the field Q(z). 

The constants of the differential field Fp(z) (with the usual differentiation 5) 
is the field Fp(zP). One can view Fp(z) as a vector space over F,(zP) with basis 
l,z,... , zp-‘. The differential operator Lp : Fp(z) + Fp(z) is a Fp(zP) linear 
map. We will show that statement (2) means that the equation Lp( y) = 0 has 
the maximum set of solutions that one can expect. 

We start by proving the easy implication of Grothendieck’s conjecture. 

Lemma 1.1. Statement (1) implies statement (2). 

Proof. Let us consider first the case where yi , . . . , y, E Q(z). One can form the 
‘Wronskian’ w which is the determinant of the matrix 

One knows that linearly independence over the algebraic closure of Q of the 

Yl,..*, yn is equivalent to w # 0. 
One takes now a prime p such that the reductions y~,~, . . . yn,p, wp of 

Yl,..., yn, w make sense and that wp # 0. This excludes finitely many primes. 
Suppose now that the y~,~, . . . , yn,p satisfy a non trivial relation biyi,, + . . . + 

b,y,,, = 0 with bl,. . . relations bly~~ + . . . ;tn;$cZp). Since the bi,. . . , b, are constants, one finds 
- 0 for all J 2 1. This implies that wp = 0 and 

contradicts our assumption on p. 

The general case: A finite extension K > Q(z), has the form Q(z)[t] := 
Q(z)[T]/(F), where F = Td + bd_ lTd-’ +. ‘. + bo is an irreducible poly- 
nomial and t is the residue of T. The differentiation ’ of Q(z) extends uniquely 
to K. Indeed, this extension is determined by the value of the derivative t’ oft. 
The equation F(t) = 0 implies that t’ = -(bL_ Itd-l + . . . + b,‘t + bL)/F+(t), 
where Fk denotes the derivative of F with respect to T. We choose K such that 
the independent solutions yi, . . , y,, lie in K. The Wronskian of Yi, . . , y,, is 
again denoted by w. One considers now primes p such that: 

(i) bd_l,...,bo E R,. 
(ii) the discriminant of F (with respect to T) is invertible in R,. 

(iii) yi, . . . , yn E Rp. 
(iv) w is an invertible element of RP[t]. 

This excludes finitely many primes. The ring R,,[t] is invariant under differ- 
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entiation. Indeed, the discriminant of F is invertible and thus F;(t) is invertible 
in Rp[t]. Hence t’ E RP[t]. The ideal (p) E RP[t] is invariant under differentia- 
tion. After dividing by the ideal (p) one finds an extension FJz) c RP[t]/(p) 
such that the derivation of Fp(z) extends to R&]/(p). The latter ring can also be 
written as Fp(z)[T]/(P), where P is the reduction modulo p of F. The dis- 
criminant of P is, by assumption, invertible. Then R&]/(p) is a product 
M, x ... x M, of separable field extensions Mi of Fp(z). The differentiation of 
Fp(z) extends in a unique way to this product Ml x 3 -. x Ms. This extension 
coincides therefore with the derivation that we had above. Let M = Ml and let 

v,.*.> w,, ii denote the images of yi , . . . , y,,, w in M. Then B is the Wronskian of 

v,**., v,,. We conclude, as above, that ~1,. . . , v, are linearly independent over 
the field of constants of M. Using that A4 is separable over Fp(z), one can show 
that the field of constants of M is just Mp and that 1, z, . . . , z?‘- 1 is also a basis of 
M over MJ’. In other words A4 = A4* @F&P) Fp(z). The natural extension of Lp 
as differential operator to M coincides with the extension of Lp as F,(zP)-linear 
operator on the vector space Fp(z) to an MJ’-linear operator on M. Therefore 
the kernel of Lp on Fp(z) and the kernel of L,, on M have the same dimension. 
The latter is n and thus the dimension of the kernel of Lp on Fp(z) is also n. q 

Some history of the conjecture. A. Grothendieck seems to have formulated this 
conjecture around 1969. The first positive answer were B. Dwork’s results, (ap- 
proximately 1970, see [K2]) for ordinary hypergeometric equations. In 1972, 
N. Katz [Kl] proved the conjecture for Gauss-Manin differential equations 
(this includes the ordinary hypergeometric equations). The work of T. Honda 
[Ho] (1974) on the conjecture (this includes order one equations) was post- 
humously published in 1981. There is a very general reformulation by N. Katz 
[K3] (1982) of the conjecture which links the Lie algebra of the differential Ga- 
lois group of a connexion with p-curvatures. D. Chudnovsky and G. Chud- 
novsky [CC] (1985) claim a proof for order one equations over a function field 
over a number field. In 1989, F. Beukers and G. Heckman [BH] gave a proof for 
generalized hypergeometric differential equations. Y. Haraoka proved the 
conjecture for Pochhammer equations in 1994. In Katz’ book [K4] ‘Rigid local 
systems’ (1996) the conjecture is proved for certain rigid differential equations. 
This includes all former cases where the conjecture was known. In 1997, 
Y. Andre [A21 was able to prove the conjecture in still greater generality 
(equations associated with Gauss-Manin differential equations). In particular, 
he gave the first complete proof for the case of order one equations over func- 
tion fields over an algebraic number field. 

Let us mention, finally, the first case where the conjecture is ‘wide open’. This 
is the case of a scalar equations over Q(Z) of order two (!) with four regular 
singular points, rational exponents and having differential Galois group, say 
SL(2). One has to show here that statement (2) is not valid. 

It is further interesting to know that N. Katz has shown (see [K3]) that our 
simple formulation of Grothendieck’s conjecture implies the most general form 
of the conjecture. 

115 



The p-curvature 
Statement (1) is well known to be equivalent to: the differential Galois group of 
the equation is finite. There is also a short formulation for statement (2), 
namely: for almost all p, the p-curvature is 0. The definition of the p-curvature 
is more easily given for a differential operator in matrix form. Consider the 
differential operator d := 5 - A, where A is a matrix of size n x 12 with coeffi- 
cients, say in the field Fp(z). More generally one may take a field k of char- 
acteristic p such that [k : kp] =p. Then k = kr(z) for some z and the differ- 
entiation ’ on k is given by z’ = 1. 

The operator 8, acting upon the n-dimensional k-vector space k”, is kp-lin- 
ear. We note that the notation is confusing and we will write V := k”. The pth 
power dP is certainly again kJ’-linear. But it so happens that 8’ is k-linear. In- 
deed, one easily verifies the rule 8. z = z . d + 1 (as operators). A small calcu- 
lation shows that 8’~ = zdf’. This implies that 8’ is k-linear. The operator 8’ is 
called the p-curvature of a. 

Lemma 1.2. (P. Cartier) 
Let the field k be as above. The matrix dtflerential operator d = & - A, with A a 
matrix of size n x n and with coeficients in k, has an n-dimensional solution space 
over kr tfand only tfits p-curvature dr is zero. 

Proof. The operator d : V := kn + V is linear with respect to the subfield kr of 
k. Suppose that there are et,. . . , e, E V in the kernel of d and linearly in- 
dependent over kr. Using formulas like a(fei) = azn- ‘el, one easily finds that 
the el, . . . , e, are linearly independent over k itself. Thus 3’ is zero on the k- 
basis et,. . . , e, of V. Hence 8’ = 0. 

On the other hand, suppose that 3’ = 0. Then the kP-linear map d on V is 
nilpotent. In particular, there is a non zero element et E I/ with det = 0. The 
vector space kel c V is invariant under 8. Thus there is an induced action of d 
on the n - l-dimensional vector space W := V/kel. By induction, W has a k- 
basis f2, . . . , fn with 135 = 0. Lifting back to V we find vectors F2,. . . , F,, such 
that el,Fl,..., F,, is a k-basis of V and such that al;;: E kel for all i 2 2. Con- 
sider for instance 8Fi = giel. Then 0 = dP_ ‘giet = giP-‘)et and thus 
gj’-‘) = 0. It is easy to see that this implies that there exists a Gi E k with 
GI = gi. Define ei = Fi - Giel for i 2 2. Then el, . , e, is a k-basis of V with 
dei = 0 for all i. Then the kernel of 8 on V is krel + . s . + kre,. 0 

Remarks 1.3. Thep-curvature of a matrix deferential operator z- A, where A is 
n x n matrix with coejjicients (say) in Q(Z), can be given by a simple algorithm. 
For n = 1 the p-curvature of -$ - a is a (P- ‘1 + ar. Also for n = 2 there is a closed 
formula for the p-curvature. No closed formula seems to exist for n > 2. (see 

[PI ,P21). 

In the sequel we will study differential equations of the type y’ = ay + b with 
a, b E Q(z) and their reductions modulo primes p. We note that this in- 
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homogeneous equation (for b # 0) can be seen as a special case of a homo- 
geneous equation of order two, namely the equation (b-’ ( y’ - cry))’ = 0. 

2. THE EQUATIONS J” = b AND y’ = Uy 

In this section we will prove Grothendieck’s conjecture for the two equations 
above. 

Proposition 2.1. Let b E Q(z). Thefollowingproperties of the equation y’ = b are 
equivalent. 

(1) All the residues of bdz are zero. 
(2) There is a solution which is algebraic over Q(z). 
(3) There is a solution in Q(z). 
(4) For almost allprimesp there exists a solution in F,,(z). 

Proof. (1) + (2) is trivial. Let a solution f be given which is algebraic over 
Q(z). Then iCf= i f; E Q(z), where fl, . . . , fS are the conjugates off, is also a 
solution of the equation. This proves (2) + (3). Further (3) + (4) is obvious. 

Suppose now that (4) holds. We replace Q be a finite,extension K such that all 
the poles of bdz are in K u {cm}. The prime numbers p are replaced by the 
primes p of the ring of integers of K. Consider a prime p, for which y ’ = b has a 
solutionmodulo p, which does not divide any denominator of b and such that 
the poles of b aredistinct module p. One observes that the reduction of the re- 
sidue res,(bdz) modulo p is equalto the residue at a modulo p the reduction 
modulop of bdz. Since there is a solution of y ’ = b modulo p ont?concludes that 
res,(bdz) is zero module this p. This holds for almost all p and thus 
res,(bdz) = 0. Therefore (1) holds- 

- 
0 

The following is a variation on a proof given by T. Honda [Ho]. 

Proposition 2.2. (T. Honda) 
Let a E Q(z)*. Thefollowing are equivalent. 

(1) All the poles (including a possible pole at 00) of adz have order I and all 
residues are in Q. 

(2) The equation y’ = ay has a non zero solution which is algebraic over Q(z). 
(3) For almost all prime numbers p, the equation y’ = ay has a non zero solu- 

tion in Fp(z). 

Proof. (1) + (2). Choose a positive integer m such that all the residues of madz 
are integers. It is easily seen that madz is equal to 9 for some non zero f E Q(z), 
where Q denotes the algebraic closure of Q. Now f l/m is an algebraic solution 
of y’ = ay. 
(2) =+ (3). This is a special case of lemma 1.1. 
(3) + (1). In the proof we replace Q be a finite extension K such that all the 
poles of adz are in K U {co}. The prime numbers are replaced by prime ideals p 
of the ring of integers of K and the fields Fp are replaced by finite extension: 
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Consider a prime p such that adz can be reduced modulo p, such that the poles 
of adz are distinctmodulo p and such that y’ = ay has anon zero solutionf 
modulo p. One writesf as a-product ni (z - CX~)~~ with all oi algebraic over FP 
and all -mi E Z. One observes that the reduction of adz modulo p is 
4 = Cj (mi/(z - ni))dz, has poles of order at most 1 and all its residues are in 
FP for the prime number p lying under p. This holds for almost all p. The con- 
clusion is that adz has at most poles of order 1 and that any residue rat a pole is 
an algebraic number in K which reduces modulo almost every prime p to an 
element in a prime field FP. If r $4 Q then by Cebotarev’s density theorem, there 
is an infinite set of primes p of K such that r modulo p does not lie in the cor- 
responding prime field FP. Thus r E Q. 0 

Example 2.3. The equation y’ = (1/(z2 + 1))~ has only the trivial algebraic 
solution y = 0 since the residues are in Q(i) \ Q. The prime numbersp such that 
the equation has a non zero solution in FP(z) are obviously thep E 1 modulo 4. 

3. ALGORITHMS FOR y’ = uy + b 

3.1. Solutions in the field Q(z) 

We suppose that both a and b are non zero. The reasoning (2) + (3) of propo- 
sition 2.1 applies here as well and therefore we are only interested in a possible 
solution in Q(z). The Risch algorithm for determining possible solutions 
y E Q(Z) works as follows. For every pole a E Q of either a or b one determines 
an a priori lower bound for the order of y at cr. This produces an expression 
y= T/N with T,NEQ[ ] z with N manic and known and T unknown. A 
calculation at 0;) yields a bound d on the degree of T. Put T = to+ 
tlz+...+&,Td with unknown coefficients ti. The equation (T/N)’ = 
a( T/N) + b reduces now to a set of linear equations for the tie Linear algebra 
finishes the algorithm. 

3.2. Solutions in the field FP(z) 

We suppose that both a and b are non zero. One considers the operator 
L : FP(z) -+ FP(z), given by L( y) = y’ - uy. This operator is linear over the field 
FP(zP). There are two cases to treat: 

(1) The equation y’ = uy has only the trivial solution 0 E F,(z). 
(2) There is a solution yo E FP(z), yo # 0. 

In the first case the kernel of L is 0 and so L is bijective. Thus for any b there is a 
unique solution y of y’ = uy + b. 
In the second case one uses ‘variation of constants’, i.e., one writes y = F’s and 
finds the equation F’ = yo_‘b. We may suppose that yo has the form n(z - CE)“‘~ 
with 0 < m, < p and write b = T/N. We may replace the equation F’ = yo’b 
by the equation (FyiNP)’ = y, p- ‘NJ’- 1 T E FP[z]. Thus there is a solution y if 
and only if the polynomial y, P-‘Np-‘T does not contain the terms 
zP-1 

,Z 
2~-1,~3p-l ). . . . 
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4. THREE CASES FOR J” = Uy + b 

We will suppose that both a and b are non zero. Suppose that there is a solution 
y E Q(z). Then for almost all primes p, the equation and the solution p reduce 
nicely modulo p and so there is a solution in Fp(z) of the reduced equation. The 
question is now: 

Suppose that the equation has a solution modulo p for almost all p. Does it follow 
that there is a solution in Q(z)? 

The answer depends heavily on the nature of the homogeneous equation 
y’ = uy and we will consider three separate cases. In the first case y’ = uy is 
supposed to have an algebraic solution. The equation y’ = uy + b can be writ- 
ten as a second order equation (b-’ ( y’ - uy))’ = 0. The assumptions are 
equivalent to: for almost all primes p there are two independent solutions in 
Fp(z). The Grothendieck conjecture predicts then two independent solutions, 
algebraic over Q(z). In this special case, this means a solution y E Q(z) of 
y’ = ay + b. The other two cases that we consider are not special cases of Gro- 
thendieck’s conjecture. 

5. CASE 1: EQUATION y’ = ay HAS AN ALGEBRAIC SOLUTION 

Let f # 0 be a solution of y’ = uy, which is algebraic over Q(z). We apply 
‘variation of constants’, i.e., y = f F and equation F’ = j. In terms of differ- 
ential forms: dF = w := $ dz. This differential form is now defined over the finite 
field extension Q(z,f) of Q(z). We translate the equation in more geometric 
terms. 

Let C/Q denote the (projective, connected, non singular) curve over Q which 
has Q(z, f) as function field. Let g denote its genus . Then we are given a dif- 
ferential form w. We assume that, for almost all primes p, the reduction of w 
modulo p is exact, and we want to show that w itself is exact. 

The reasoning (4) + (1) of proposition 2.1 also yields that every residue of w 
on C is 0. In other words, w is a differential form of the second kind and it suf- 
fices to consider its image in the De Rham cohomology group HLR(C) of the 
curve C. In testing whether the above statement is correct, it suffices to consider 
nice representatives of the Q-vector space H&(C) of dimension 2g. For g = 0, 
(i.e, the case of proposition 2.1) there is nothing to prove. Thus the first new si- 
tuation is g = 1. This occurs, for instance, for the differential equation 
y’=((1/2)/(z3+az+b))y+B such that z3+az+b has a non zero dis- 
criminant and with suitable B E Q(z). The curve C = E is the elliptic curve 
given by equation y2 = v := x3 + ax + b with a, b E Q. (Note that we have 
changed z into x). The representatives of IIjR(E) are w = (CX + ,&) 9 with 
IX, p E Q. What we want to show is: 

Theorem 5.1. Let E denote the elliptic curve over Q given by the a&e equation 
y2 = x3 + ax + 6. If w = (a + /3x) $ is exact module p for almost all p, then 
cX=p=o. 
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We start with some calculations in characteristic p. The function field of the 
reduced curve is equal to F,,(x) + Fp(x)y with y2 = w. In trying to solve dF = w 
(modulo p), we write F = A + By. Then dF = A’dx + (vB’ + w/B/2) $f and so 
we have to solve vB’ + w/B/2 = cx + ,LIx. Put f = v(J-‘)/~ and write B = fG. 
Then we obtain an equation wPG’ = (a + ,&x)w@-‘)/~. The right hand side is a 
polynomial of degree (3(p - 1))/2. Thus we see that w modulop is exact if and 
only if (a + ,k)w k1Y2 does not contain the term xp- ‘. We consider first two 
easy examples. 

Example 1. w = x3 + 1. The coefficient of xP_ ’ is, forp E 1 modulo 3, equal to 
a (non-zero) binomial coefficient times CL For p = 2 modulo 3, this coefficient is 
equal to a (non-zero) binomial coefficient times p. The conclusion is: If w is ex- 
act modulop for almost allp, then a = p = 0. 

Example 2. w = x3 + x. The coefficient of xp-’ is, forp E 1 modulo 4, equal to 
a (non-zero) binomial coefficient times o. For p 5 3 modulo 4, this coefficient is 
equal to a (non-zero) binomial coefficient times p. The conclusion is again: If w 
is exact modulo p for almost all p, then a = p = 0. 

Remark. The two examples above concern rather special elliptic curves E. As 
we will see in the sequel, the main property that we have used is that for ‘half’ of 
the primes p the reduction of E modulo p is supersingular. This property also 
holds for any elliptic curve having complex multiplication and these curves 
provide other easy examples. 

In the general case 

(a + /3x)(x3 + ax + b)(PT1)‘2 = 

(cl + px)(x3(p-1)‘2 + . . . + C,_,x”-1 + cp_2xp-2 + ” .) 

and the coefficient of xP_ ’ is equal to ,Kp _ 2 + aC, _ 1. The problem is of course 
that we have no ‘closed formula’ for the C, _ 1 and C, _ 2 (depending on a, b and 
p). The first helpful result is: 

Lemma 5.2. C, _ 1 and C, _ 2 cannot both be zero. 

Proof. We will prove that for a, b E Fp, such that x3 + ax + b has three distinct 
roots, not both polynomials (x3 + ax + b)(p- 1)‘2 and x(x3 + ax + b)(p-‘)‘2 are 
derivatives. This condition does not change if x is replaced by cx + d, where 
c, d E Fp and c f 0. Thus we may replace the polynomial x3 + ax + b by 
x(x - 1)(x - X) (with X E Fp and X # 0,l). We view now X as a variable. The 
coefficients C, _ 1 and C, _ 2 of F := (x(x - 1)(x - X))(p- 1)‘2 are functions of X. 
In fact they are polynomials in X of degree (p - 1)/2. The maybe surprising 
observation is that C, _ 1 and C, _ 2 satisfy a simple linear differential equation, 
namely 
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d C,_, - 

dX q-2 = 
()( 

2(A) z&T) 
& - 2(X!- 1) 

Let us accept this differential equation for a moment and consider a 
X0 E FP, X0 # 0, 1, co. Suppose that C,_ 1(X0) = CP_2(Xs) = 0. Then all the de- 
rivatives of C, _ 1 and C, _ 2 at X0 are 0. Thus C, _ 1 and C, _ 2 arepth powers. This 
contradicts that C, _ 1 and C, _ 2 are polynomials of degree (p - 1)/2. 

The above differential equation is derived from the family of elliptic curves 
y2 = x(x - 1)(x - A), say over the field Q(X) (called the Legendre family). 
The first De Rham cohomology group HAR is defined as before. On this vector 
space of dimension two over the field Q(X) one can differentiate with respect 
to the variable X. The rules for the differentiation can be taken to be: & is zero 
on x and dx and -&v is the usual differentiation of y as function of X. Then 
one finds & ($) = A$ and &(x$) = h$. Both expressions are differ- 
ential forms of the second kind and they are equal, modulo exact differentials, 
to ;L&+-_ 

2(X--l) Y ZX(xI- 1) y and Z!_-&+ 
2(X-I) Y ---a The differential equation that 2(L 1) y * 

we constructed in this way is called the Gauss-Manin differential equation of 
the Legendre family. It can be verified that this is in fact equivalent to the 
hypergeometric equation with parameters l/2,1 /2,1, 

The above calculation remains valid over the field &,(A) for any odd prime p. 

Over the latter field we may multiply the basis $, T of HiR with the ‘constant’ 
yp. The new basis is then Fdx,xFdx. We will omit the dx in the notation and, 
since we work modulo derivatives (of polynomials), we may replace F and xF 

by C,_ txp- 1 and C, _zxP- l. After omitting term xp- ’ one obtains the linear 
differential equation above for C, _ 1, C, _ 2. q 

Now we recall some results about reductions of an elliptic curve E modulo a 
prime p. We only consider reductions which are again elliptic curves (this ex- 
clused finitely many primes). The reduction i? of E modulo p is called ordinary 

if the group {g E i!?(FP)] gP = 1) is cyclic of order p. In the contrary case the 
reduction (which is regular) is called super-singular. An easy criterion is: E 

modulo p is supersingular if and only if C’_ 1 = 0. It can further be shown that 
there are infinitely many primes p such that E modulo p has an ordinary re- 
duction. A rather deep result is Elkies’ theorem (see [El): Any elliptic curve 
over Q has supersingular reduction for infinitely many primes p. (The analo- 
gous statement for elliptic curves over a number field is not known to be true). 

We apply now all this to the coefficient &_2 + crCP_ 1. For infinitely many 
primes p we have that C,_ 1 = 0 and so C,_, # 0. Thus ,0 = 0. For infinitely 
many primes C, _ 1 # 0. Therefore (Y = 0. This ends the proof of theorem 5.1 
and of Grothendieck’s conjecture for a genus 1 curve over Q. 

Now we compare theorem 5.1 with the literature. It is the genus 1 case of a 
theorem of D. Chudnovski and G. Chudnovski [CC], which reads as follows. 

Theorem 5.3. Let C/K be a curve over a number field K and let w be a diferential 

form on C. 
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(1) Suppose that for almost all primes p of K the diflerential form w is exact 
modulo p, then w is exact. 

(2) Suppose that the equation 9 = w has a solution module p for almost all p. 

Then the equation $ = w has a solution F which is algebraic over thefunctionfield 
of c. 

The proof of this theorem was not well understood. Recently, Y. Andre (see 
[A2]) gave a complete proof of the theorem. His method is totally different from 
our proof of theorem 5.1. 

6. CASE 2: THE EQUATION y’ = ay HAS AN IRREGULAR SINGULARITY 

The assumption on y’ = ay can also be restated as adz has some pole of order 
> 2. This implies that for almost all p, the equation y’ = ay has only the zero 
solution in Fp(z). As a consequence, the inhomogeneous equation y’ = ay + b 
has, for almost all p, a (unique) solution in FJz). However, in general there is 
no solution y E Q(z). We give an example: 

The equation y’ = y + z-l. The point 03 is an irregular singular point. There is 
no solution in Q(z) and there is a solution modulo p for all p. The link between 
those solutions modulo p and something in characteristic zero is explained by 
considering the formal solution y = C,, 1 (-l)“(n - l)!z-” at z = CCL The 
amazing observation is that y reduces module any prime p to a polynomial so- 
lution (in the variable z-r) with coefficients in Fr. This example illustrates re- 
cent work of Y. Andre (see [Al]) on arithmetic properties of Gevrey series so- 
lutions of differential equations. 

7. CASE 3: y’ = ay HAS ONLY REGULAR SINGULARITIES, BUT NO ALGEBRAIC 

SOLUTION f 0 

For this situation, F. Beukers has proposed the following extension of Gro- 
thendieck’s conjecture. 

Conjecture 7.1. Suppose that y’ = ay + b has for almost all primes p a solution 
modulo p, then there is a solution in Q(z). 

As a test, we consider one rather interesting equation, namely 

witha,bEQ, a@Z, b#O. 

This equation has no solution y E Q(z). The aim is to show that there are in- 
finitely many primesp such that the equation has no solution in Fp(z). Forp E 3 
modulo 4, the operator L : F,(z) -+ Fp(z), considered in 3.2, is bijective. Thus 
the only primes that interest us arep E 1 modulo 4. The homogeneous equation 
y’ = ((az + b)/(z2 + 1))~ has a non zero solution f E Fr(z). For an element 
d E Fp we write Mod[d,p] for its representative in (0, 1,. . . ,p - 1). For con- 
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venience we write i, for the element of Fp with i2 = -1 and Mod[i,p] < p/2. In 
the field Fp(z) \we have the identity 

az + b 
-= 
22+ 1 

a/2 + ib/2 + a/2 - ib/2 

z+i z-i ’ 

and thus 

f = (z + i)Mod[a/2+ ‘b/z>pl (z _ i)MOd[“/2-‘b/2,Pl. 

Variation of constants y = Ff leads to the equation 

F’(z2 + 1)~ = (z + i)p-MOd[a/2+‘b/2,Pl-l (z _ i)p-MOd[n/2-ib/2,Pl-l. 

Using the shift z H z + i, one easily sees that the last equation has a solution if 
and only if the degree of the right hand side is 5 p - 2. The latter is equivalent 
with 

Mod[a/2 + ib/2,p] + Mod[a/2 - ib/2,p] 2 p. 

Thus we want to show that there are infinitely many primes p s 1 modulo 4 
such that the right hand side is < p. 

For, say the case a = l/2 and b = 2, this means that we have to find infinitely 
many primes p E 1 modulo 4 with Mod[i,p] 5 0, - 1)/4. A computer experi- 
ment, run by a Ph.D. student W.R. Oudshoorn, showed that for the first lo6 
primesp withp E 1 modulo 4, ‘half’ of the primes satisfy Mod[i,p] < (p - 1)/4. 
It was rather a surprise to learn from a Bourbaki talk (see [MI) that this com- 
puter experiment, and more generally the statement that there are infinitely 
many primes p such that our equation has no solution in F,,(z), follows from a 
recent work of Duke, Friedlander, Iwaniec and Toth on Selberg’s big sieve. The 
theorem is the following. 

Theorem 7.2. Let f = x2 + ax + b E Q[ x ] b e an irreducible polynomial. Then the 
set 

{s E [0, I] ( u E (0, 1, . . . ,p - l}, f (v) = 0 modulo p} 

is uniformly distributed in [O,l]. 

The method of the example and theorem 7.2 provide a proof of the following. 

Corollary 7.3. Conjecture 7.1 is true for equations y’ = ay + b where the de- 
nominator of a E Q(z) * is an irreducible polynomial of degree two. 

The method of the example can be extended to show that conjecture 7.1 for 
y’ = ay + b, where a has a denominator f which is an irreducible polynomial of 
degree > 2, is equivalent with a weak form of theorem 7.2 for f instead of a 
quadratic polynomial. Namely, the statement that suitable intervals in [0, l] 
contain i for infinitely many primes p. 
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